好きな漢字
ランキング30位
獲得票なし
嫌いな漢字
ランキング32位
獲得票なし


  • 50%


  • 50%
なぜ好きなの?
なぜ嫌いなの?

目(眼、め)は、光を受容する感覚器である。光の情報は眼で受容され、中枢神経系の働きによって視覚が生じる。 ヒトの眼は感覚器系に当たる眼球と附属器、神経系に当たる視神経と動眼神経からなる。眼球は光受容に関連する。角膜、瞳孔、水晶体などの構造は、光学的役割を果たす。網膜において光は神経信号に符号化される。視神経は、網膜からの神経情報を脳へと伝達する。付属器のうち眼瞼や涙器は眼球を保護する。外眼筋は眼球運動に寄与する。多くの動物が眼に相当する器官を持つ。動物の眼には、人間の眼と構造や機能が大きく異なるものがある。 以下では、まず前半でヒトの眼について、後半では動物全体の眼についてそれぞれ記述する。

● ヒトの眼の構造
眼は眼窩に位置し、眼球、視神経、付属器からなるその外周にあり、±10%程度の個人差がある。疾患により眼球サイズは変化し、例えば近視/遠視では眼球の奥行き(axial)が10%ほど異なる傾向にある。また健常成人の平均黒目幅は11.7mmであり、個人差は±7% (±0.42 mm) 程度である。男女間で差は見られない。

◎ 付属器
眼球の外側には付属器が付く。眼瞼は眼球の前方に位置する折りたたみ可能な上下2枚の襞で、眼球の保護をする。内側は血管と神経が張り巡らされた結膜があり、この箇所は感染症を起こしやすい。内部には眼輪筋と、結合組織からなり眼球と瞼の摩擦を低減する脂肪性物を分泌するマイポーブ腺を一列に備えた瞼板がある 眼光学系は、カメラにたとえられることがある。角膜は単焦点レンズ、瞳孔は絞り、水晶体は可変焦点レンズ、網膜はフィルムに相当するとされる。しかしながら、眼光学系の各々の屈折面では明確な光軸は定義されない。また、各々の屈折面における近似的な光軸は、互いに一致しない。さらに、中心窩や瞳孔の中心は、近似的な光軸上には位置しない。このように、眼光学系はカメラのような共軸光学系とは異なり、非共軸光学系である。

◎ 網膜
網膜において光受容がなされる。すなわち、眼光学系を通じて網膜に投射された光は、網膜において神経信号へ符号化される。網膜からは視神経が出て、神経信号を外側膝状体や上丘へと伝達する。

◎ 付属器
眼瞼は眼球を物理的に保護する。また、瞬目により結膜表面に涙液を分布させる。 涙器は涙液の分泌と除去に関わる。涙液にはリゾチーム、ラクトフェリン、免疫グロブリンなどが含まれる。

◎ コミュニケーション機能
少なくとも人間の場合に、眼は表情を構成する重要な要素であり、視覚的な個体間の情報交換、いわゆる非言語コミュニケーションの大きな部分を担っている。日本語では「眼は心の窓」「目は口ほどにものを言い」という表現がある。また、「眼が泳ぐ」「目が据わる」などの表現も、眼の感情表現における役割を示すものである。目と目を合わせることをアイコンタクトと言う。 さらに、ヒトの場合はまぶたの間から虹彩より外の白目の部分が見えること、その上に眉毛があることは独自の特徴で、これらは眼の作る表現の幅を広げ、強調する役割を担ってもいる。また涙も単に眼を洗浄する役割以上に感情と強い結びつきを持つ。

● 眼の疾患
水晶体が濁って起こる白内障や網膜神経節細胞が死滅する緑内障、網膜から神経網膜が剥がれる網膜剥離、結膜にできる炎症である結膜炎など、目を患部とする疾患は数多く存在する。特に眼球部分を患部とする疾患の場合、症状の進行によって失明することもある。目を扱う医学の診療・研究分野は眼科学と呼ばれる。また、目において屈折異常が起きると近視や乱視、遠視などといった症状が現れる。こうした屈折異常を根本的に治療することは困難であるが、眼鏡やコンタクトレンズといった矯正器具を使用することでほとんどの屈折異常は生活上問題のない程度まで症状を緩和することが可能である。 眉毛と目の組み合わせを左に90度回転させると「10」に見えることから、毎年10月10日は「目の愛護デー」とされており、眼科医などが目の異常などの早期受診などを呼びかける啓発行事を実施している。同様な理由で、1001=10月1日は「眼鏡の日」となっている。

● 動物の眼
動物の眼は、発生起源が皮膚の表層部である表皮であるものと、中枢神経系である脳の一部から生じるものの2つに大別できる。無脊椎動物の眼は皮膚由来であり、脊椎動物の眼は脳由来である。

◎ 光受容器
原生生物のミドリムシは、鞭毛基部に感光部を持つ。多細胞生物のうち、光に応答するが、光を受容するための特別の構造を有さない動物は、体表の細胞に感光性色素を持つ。これらの構造は、光受容のために分化した構造ではない。

◎ 散在性視覚器
最も原始的な眼は環形動物であるミミズのような明暗を感知するだけの「明暗視」が可能なものが体表面に分布する形態のものである。このような体の各部に分布する眼は「散在性視覚器」(さんざいせいしかくき)と呼ばれ、ミミズでは表皮の表皮細胞の間に単独の視細胞がまばらに分布しているまでに進化を遂げているが、発生過程では眼の組織が表皮から生じるため、眼胞と呼ばれる眼の組織が表皮細胞から分化して生じてその前壁部分が厚みを帯びて水晶体後半となり、表皮細胞から再びせり出して眼胞を覆った部分の中央が外側に向かって膨らみ水晶体前半となる。頭足類ではこれら2つが融合して水晶体となる。ただし他の大多数の無脊椎動物の眼と同様に「背向性眼」(=反転眼)ではない。発生においては無脊椎動物の眼はすべてが表皮由来であるが、脊椎動物の外側眼は網膜組織と色素上皮層の2層構造などが脳由来であり角膜の外層と水晶体が表皮由来である。脊椎動物の頭頂眼は脳由来の網膜だけの1層構造である。また脊椎動物の外側眼は背向性眼(反転眼)であり、視神経乳頭による盲点があるが、頭頂眼は反転眼ではない。

◎ 単眼
光受容細胞が杯状の構造を形成し、その外層にレンズを備える構造を単眼と呼ぶ。単眼は、レンズと網膜を備えるが、ピント調節や絞りなどの機能はない。環形動物、多くの軟体動物、節足動物は単眼を持つ。

◎ 複眼
複眼は、個眼の集合体である。

◎ 色覚
光を捉える目の細胞には、明るい場所で働く錐体細胞と、暗い場所で使われる桿体細胞がある。色を認識するのはこのうち錐体細胞であるが、全ての色すなわち全ての波長の光を捉えられない。人間の目が識別可能な波長幅を特に可視光線と言うが、見えている光の波長は生物によって異なる。 全ての目において光を捉える事は、視細胞に蓄えられたオプシンというタンパク質分子が最初に光を吸収する事で始まる。このオプシンには複数の種類があり、それぞれ受け止める波長が短い方から「紫外/青型」「青型」「緑型」「赤/緑型」の4種に分けられる。この4種は、生物の中で5億年前頃に揃ったと言われる。このうち人類が持つオプシンは、波長が青寄りになり420nm付近に特化した「紫外/青型」と、530nm付近に特化した「赤/緑型」(緑)、560nm付近に特化した「赤/緑型」(赤)の2種類3サブタイプであり、色覚は3色型となる。 脊椎動物のオプシンを調べると、魚類・爬虫類・鳥類が4種類を持っており、両生類は見つかっていないがこの例に当たると考えられている。特に魚類はサブタイプも多くメダカは8タイプを持つ。ところが進化上で、ほとんどの哺乳類は「青型」「緑型」を失った。これは初期の哺乳類が主に夜行性だった事が影響したと考えられる。さらに「紫外/青型」のうち紫外線を見る能力も失うが、例外的に有袋類のオポッサムや齧歯類の中には紫外線を感知する目を持つ者もいる。 オプシンを失い2種類2サブタイプの色覚(2色型)となった哺乳類のうちから、霊長類は進化の過程で「赤/緑型」のサブタイプを増やした。これは、主な霊長類が生きた場所が森林であり、生存する上でものを見分ける際に色が重要だったためと考えられる。中には特殊な例もあり、オマキザルはサブタイプが異なる2色型と3色型が群れの中で混在するケースが見つかっている。

● 眼の進化
生物がいつ視覚的な能力を獲得したのかは定かでなく、一説には21億年以上前の単細胞生物が光を感知できたというが定かではない。これは柔らかい構造である目は化石として残りにくいためである。それでも先カンブリア時代以前から、生物は光を捉える表面細胞を備えていたと考えられる。これが爆発的な進化を遂げたのがカンブリア紀(約5億2000万年前)のいわゆるカンブリア爆発である。浅瀬の海を舞台に、視力を持てば捕食のためまたは敵から逃れる上で非常に有利に働く。カンブリア紀は、目が生存に有利な機関として進化と多様化を進めたと考えられ、これを「光スイッチ説」と言う。 チャールズ・ダーウィンは、複雑な目の構造が自然にできあがるという考えは合理的でないように思われると述べたが、それでも自説を放棄せず、目も生物は進化の中で獲得したという説を堅持した。近年のシミュレーションでは、生物の世代交代を1年とした場合、単純な目がカメラ眼に進化するまでに必要な時間は40万年以下という結果も得られた。 進化論にまつわる議論の歴史として、「脊椎動物の複雑な眼の構造の、どれか1つでも要素が欠けると正常な視力が得られないと考えられるとし、また「最初から完全な状態で作られていなければ眼は眼たりえない」、「すると自然選択で有利とならないので、目が発生したことが説明困難」とするような説が、繰り返し指摘され、進化論をめぐる難問のひとつとみなされてきた歴史がある。上記のように最近では「現実には各種動物において様々な型の眼が見られ、それらの性能もまた多様である。高度なものではヒトと同様かそれ以上の情報を提供するとされるものもあり、逆に簡単な明暗程度しかわからないであろうものもある」ともされ、“完全な眼”を想定するのは困難であり、また、不完全な視力では役に立たないとの論旨も根拠を持たないと言える。

「目」『フリー百科事典 ウィキペディア日本語版』(https://ja.wikipedia.org/
2024年3月29日11時(日本時間)現在での最新版を取得

好き嫌い決勝

好きな漢字は どっち?

1位 vs 2位


VS

好きな漢字を お選びください。

嫌いな漢字は どっち?

1位 vs 2位


VS

嫌いな漢字を お選びください。

好き嫌い準決勝

好きな漢字は どっち?

3位 vs 4位


VS

好きな漢字を お選びください。

嫌いな漢字は どっち?

3位 vs 4位


VS

嫌いな漢字を お選びください。

好き嫌い準々決勝

好きな漢字は どっち?

5位 vs 6位


VS

好きな漢字を お選びください。

嫌いな漢字は どっち?

5位 vs 6位


VS

嫌いな漢字を お選びください。

好き嫌い7位決定戦

好きな漢字は どっち?

7位 vs 8位


VS

好きな漢字を お選びください。

嫌いな漢字は どっち?

7位 vs 8位


VS

嫌いな漢字を お選びください。

好き嫌いTOP10圏内確定戦

好きな漢字は どっち?

9位 vs 10位


VS

好きな漢字を お選びください。

嫌いな漢字は どっち?

9位 vs 10位


VS

嫌いな漢字を お選びください。

漢字の無作為ピックアップ

好きな漢字は どっち?

投票すると漢字ランキングが閲覧できます!


VS

好きな漢字を お選びください。

現在 40回の投票があります!

嫌いな漢字は どっち?

投票すると漢字ランキングが閲覧できます!


VS

嫌いな漢字を お選びください。

現在 35回の投票があります!


Powered by イーオンラインサービス   楽天ウェブサービスセンター